FIT 100
More Microsoft Access and Relational Databases
Creating Views with SQL

Creating Views with SQL ... 1
1. Query Construction in SQL View: ... 2
2. Use the QBE: ... 4
3. Practice (use the QBE): ... 5

Introduction:
Today’s lab looks at an additional component of the Data Services layer:
formulating queries that select, project and join up data from different tables.

Access uses a GUI called the Query-By-Example so users can build queries
visually. In the background, Access translates the visually represented query
into SQL (Structured Query Language), the standardized language used to
communicate with a database. This SQL View can also be used to build
queries using straight SQL syntax.

Data Services
The main unit of data services (data storage) is a Table. Data storage
allows for persistent data (the data stays even when the power goes
off). A table is a collection of data about a specific topic.

Tables organize that data in columns (called attributes) and rows
(called records). One of the attributes (columns) of the table is almost
always a number data type that is used as a key. A key is used to
uniquely identify the data in a particular row. Key values must be
unique and not null. A primary key is just the attribute(s) that have
been designated as the main key for the table.

Data Services also includes the storage engine and the query
engine which deal with the saving, accessing and manipulation
of the data. A Query is used to access and manipulate the data.
Queries are also called views because they are a user’s “view”
of the data in the database.

Objectives:
1. To become familiar with graphical query method of QBE (Query-By-
Example) that is used in Access.
2. To create queries that view and/or manipulate data from one or more
tables.

The important points to remember when creating a query are:

- Always include any tables that hold the data you want to see

- Always include any tables that are in the path to the data you want to
 see.
• When using a join operation, always indicate where the tables are related: Match the keys.

• When generating a query on more than one table, always use table name qualifiers to distinctly identify the correct table

 Example:
 `tblAdvisor.LName` and `tblStudent.LName` refer to 2 distinct attributes.

 If you simply use `LName` in a query on those 2 tables, Access will not know which attribute you are referring to.

Download your database
A. Download your lab database to the desktop and open it.

B. Add 2 additional records to each table using the forms your produced last lab.

C. Now that we have some seed data in our database, we can request the display of data from different tables.

1. **Query Construction in SQL View:**

 A. To get to the SQL View, go to the Queries window and double click on the **Create query in Design View** option.

 B. When the Show Table window comes up, close it without adding any of the tables you have created.

 C. From the top menu, go to **View>SQL View** or click on the SQL icon on the tool bar.

 SQL View:

 ![Query1: Select Query](image)

 D. Enter the SQL statement needed for query A from **Assignment 4** into the window.
 Example:

      ```sql
      SELECT *
      FROM tblAdvisor;
      ```

 E. When the SQL Clauses are in place, click on the Datasheet view icon in the upper left hand or go to **View>DataSheet View** to display your
query results

For the first view, the number of rows displayed should be the same number as the records in your student table since you asked for all students.

F. Save the query for review later. Repeat the process for B and C in Assignment 4.

Now let’s take a look at creating a query using a GUI instead of just typing in commands.

What goes where in the QBE:

QBE, or Query By Example, is a graphical query language. This tool allows a user to follow a "drag and drop" method of constructing a query against a data store. You can consider the QBE as a translation tool that takes user input in graphical locations and generates SQL.

By breaking down the interface, a user can see how this tool is able to construct SQL with the input provided.
2. **Use the QBE:**
 A. Go to the Queries window and double click on the **Create Query in Design View** option.

 B. Construct the queries from Assignment 4 using the QBE. Add the table needed for the first view from the Show Table window and then close it.

 C. Drag all the fields you wish to see displayed down into the Select columns, or choose them from the Field combo box.

 D. View the results in Form View

 E. Go back to the **Design View** of the query. Can you figure out how to sort the records and display them alphabetically by last name?

You shouldn’t have to double check to see if the query is correct, but if you aren’t sure of the join, look in your tables to see what information you should get.
3. Practice (use the QBE):

Determine what information is necessary to show or what has been requested. Not all attributes used in a query need to be shown to the user.

- Show me all students (just their first and last names) and the name of their Major.
- Show all students (first name and last name), their major and their advisor. Sort by major.
- Show all students with an ART major OR a CSE Major. (Use two Majors you actually entered if you don’t have ART or CSE)
- Show who advises student number 4 (StudentID).
- Show all Students who have an Advisor from the certain department AND have a particular Major. Only show the student names.