Question

What are the five largest cities in the United States?

(Please jot down your answer on a piece of scratch paper.)

A BIG DIFFERENCE Between People and Computers

- People are very good at:
 - Resolving ambiguity
 - Taking context into account

- Computers are not very good at:
 - Resolving ambiguity
 - Inferring “right” interpretations based on context

Thus if we want to tell a computer what to do, we must do so precisely and unambiguously.
Programming Basics

To specify algorithms, we must be precise. To be precise, we need a language that is more exact than English. A programming language offers this advantage. All programming languages have a basic set of features.

What’s Special About Programming Languages?

❖ Though the Alphabetize CDs algorithm was precise enough for a person to execute successfully, computers demand greater precision

❖ Programming languages are formal notations specifically designed for specifying algorithms – that means each “word” or “sentence” in a programming language has one and only one interpretation

❖ The programming language we will study this quarter is Visual Basic 6.0 (VB6)
Our Approach To Programming

❖ The plan …
 ❖ Introduce you to general concepts of programming languages in lecture – these ideas apply to virtually all programming languages
 ❖ Use VB6 in lecture and lab to illustrate these ideas
 + In your next lab you’ll write your first VB6 program
 ❖ Practice the ideas by writing programs
 ❖ Add a few more language features…
 ❖ Practice with a few more programs…
 ❖ Some issues we’ll explore:
 + How does a computer search for information?
 + How does a computer make a decision?
 + Can a computer create something aesthetic?

Order Matters

❖ CONCEPT: Programming languages execute (“do”) instructions in order (unless told to do otherwise… more about this later)

❖ A program looks a bit like a long “to do” list; the first things on the list get done first

❖ Each instruction is executed one at a time – then the computer goes on to execute the next instruction

❖ Example: When you wrote your Web pages, the computer executed the HTML code in the order you of the statements you wrote.
Storing, “Remembering”, Changing, and Accessing Data

- Imagine a programming language that was just made up entirely of “sentences” like “Print this” or “Display that”
- It would be very limited
- The program would have to do exactly the same thing every time

CONCEPT: Being able to store, “remember”, change, and access data allows us to write programs that do the same thing but with different data each time.

Variables

- CONCEPT: Variable is the term for a place in memory where the program can store, access, and restore information.

All variables have the following 3 properties:
1. A name so that the program can refer to the variable (a location in memory)
2. A means to store a (new) value in the variable
3. A means to “see” (or make a copy of) the value stored in the variable
Variables in Exchange Sort with CDs

When we acted out Exchange Sort, we used variables as follows:
1. Each student holding a CD represented a variable (a location in memory)
2. Each variable (student) stored a value (a CD)
3. Each time we looked at the name of a CD we were “seeing” the value stored in that variable
4. When two students exchanged CDs, a new value (CD) was stored in each of the variables (students)

On Variable Names

❖ The term “variable” reminds us the value can change
❖ The names used for variables are arbitrary provided:
 ❑ Variable names must begin with a letter
 ❑ Variable names can contain any letter, numeral or _
 ❑ Most languages are case sensitive: a ≠ A
❖ Good variable names are meaningful and accurate
 ❑ total, averageOverClass, etc, but not x, o0O0o, etc

VB6: In all programming for FIT100, variable names should start with lowercase letters so as to avoid confusion with other names in VB6 … ignore this convention at your peril!
On Variable Values

- Values refer to the information stored in the variable (location in memory)
- Variables can take on different types of values
 - Whole numbers or integers: 2, -9, 1048576
 - Character sequences or strings: “2”, “&^%$#@”, “ ”
 - Decimal numbers or doubles: 2.0, 3.14159, -999.99
- In most programming languages, each variable can only hold one type of value
 - So the computer will know how much memory will be needed to store the value (e.g., integer vs. double)
 - To allow the computer to help detect errors in the code (e.g., when the program tries to put the wrong sort of value in a variable the programmer receives an error message)

Declaring Variables

- Declaring variables is a way of telling the computer:
 - That you want a location in memory (the variable)
 - What you will call (how you will refer to) that location in memory throughout your program (the variable name)
 - What type of information you will store in that location in memory, so the computer will know how much space to set aside (the variable type)

- VB6: Some examples of declaring variables:
 - Dim num1 As Integer
 - Dim letter1 As String
 - Dim averageOverClass As Double

© Copyright, Larry Snyder, 1999
Assigning Values to Variables

❖ CONCEPT: Computers must be told what value to assign to variables

❖ CONCEPT: The general form of an assignment statement is

<variable name> <assignment symbol> <expression>

- Languages use different assignment symbols: = := ←
- Read assignment as “is assigned”, or “becomes” or “gets”
- All three components must always be present

❖ CONCEPT: Fundamental property of assignment

The “flow” of information is always right-to-left

❖ VB6: Some examples of variable assignment

- destination = 12
- changedVariable = value

Let’s Try This Out…

A VB6 Example….

Dim snap As Integer
Dim crackle As Integer
Dim pop As Integer
snap = 6
pop = 3
snap = 5
snap = pop
pop = 10
crackle = pop

Question: What’s in snap? What’s in crackle?