* Part I
\square A title for the website page
\square The bogus logo inserted somewhere near the title
\square The unmodified image
\square Paragraph 1: source of the image and your argument as to why you
can alter it
\square Paragraph 2: true context of the image (what it really represents,
unmodified)
\square Paragraph 3: "fictional" context of the image. Explain how you plan
to alter it and use it so support the "storyline" of your website
o coppright 20002000, Univesity otwashinglon

To do for Part II:

FIT
100

Putting it all together and User Testing

* Modify the image
* Include text to support your modified image: create your "story"
* Use other formatting elements to make your site "look" credible- font size and color, graphics, background color, etc.
* Add an additional link to your email address and a link to your disclaimer page
* Create a copy of the page above (user testing page)
- Remove the bogus logo
- Show it to two friends, have them evaluate it based on the Assignment 3 criteria
* Create a second page (a disclaimer page) in which you:
- Provide a disclaimer about quality of information presented on the main page

Reflect on the ethical issues surrounding accuracy, authority, c redibility, etc of information on the Web

- Write up the results of your user testing
- Add a link to your main Misinformation page and to your user testing page

	Disclaimer Page
	Disclaimer about the quality of any information found on this site \qquad
Link to user testing page	Your reflections on the ethical issues surrounding accuracy, credibility, authority, etc (all the criteria we discussed) when dealing with information on The Web. \qquad
	The results of your user testing \qquad \qquad \qquad
	- Copyright 200022001, University of Washinglon

Computer Basics

100
Regardless of how much computers have changed over the last 50 years (think of our first lecture), they are still characterized by the same basic principles

FIT

100 Abstractly, A Computer Is...

* Computers process information by deterministically following instructions, called executing instructions
* Unlike humans, computers follows instructions exactly
- Computers have no imagination or creativity
\square Computers have no intuition
- Computers are literal: they have no sense of irony, subtlety, proportion...
- Computers don't joke, they're not vindictive or cruel
- Computers are not purposeful (they don't have their own changing agenda!)
...Computers execute instructions. Nothing more

FIT
 100 Interpreting the Instructions

* To perform instructions, a computer's hardware implement a process called the fetch/execute cycle

Fetch/Execute Cycle -Instruction Fetch (IF) -Instruction Decode (ID) -Data Fetch (DF) -Instruction Execution (EX) -Return Result (RR)

\therefore The F/E Cycle is an unending process

[^0]FIT Remember this when you feel like 100 screaming at your monitor....!

If a computer has any useful characteristics, it's because someone has programmed it -in other words, given it the instructions - to behave usefully

FIT
100 Anatomy Of A Computer

* A computer is essentially made up of 5 components:
\square Arithmetic/Logic Unit (ALU) - the part doing computations
- Control - the part that follows the Fetch/Execute Cycle of the program and tells the ALU what to compute
\square Memory - where data, programs are kept while computing
- Input - ports to peripheral devices that allow/bring data in
\square Output -- ports to peripheral devices that allow/send data out

FIT

100 A simple example
Envelope 1: ASK 15
Envelope 2: ASK 13
Envelope 3: ADD 151310
Envelope 4: SAY 10
Envelope 5: NEXT 1
Envelope 10: ??
Envelope 13: ??
Envelope 15: ??

FIT There always needs to be something in 100 Control: Control Rules!

* The control follows through the instructions, executing them by telling other parts what to do
* The instructions come from the program stored in the memory

The instructions are in the end expressed in a machine language, which the control can understand. A typical machine instruction is
add 124, 1005, 6215
Which means "add the number in memory location 124 To the number in memory location 1005 and put the result in memory location 6215"

FIT

100 Just to be clear...

* The instruction add 124, 1005, 6215 does not add 124, 1005 and 6215 together. We can do that in our heads or with a calculator
* It simply adds whatever has been stored at those memory locations
* Different numbers in those locations produce different results: add 124, 1005, 6215

* A memory location can store one byte of information, enough for a keyboard character * A "normal" whole number (integer) uses 4 bytes * A machine instruction uses 4 bytes * Units of memory size are ... - KB, kilobyte, 1024 bytes ... just over a thousand bytes, a "K" - MB, megabyte, $1,048,576$ bytes \ldots just over a million bytes, a meg \square GB, gigabyte, 1, 073, 741, 824 bytes ... just over a billion bytes, a "gig" - TB, terabyte, $1,099,511,627,776$ bytes \ldots.. just over a trillion bytes

FIT

100 The PC's PC

* After the instruction has been fetched and executed, the next instruction in sequence is fetched at PC +1
* This scheme should cause the computer to run through memory executing all instructions once and then "fall off the end of memory"
* Computers have machine instructions to branch and jump, i.e. go to some instruction other than the next
* Jump and Branch change the PC after increment
* Programs generally repeat many instructions

FIT
 100 Free Memory!

* Why do computers use such weird amounts to indicate 1000, 1 Million, etc?
ㅁ These numbers are powers of 2

$2^{10}=1,024$	call it a thousand
$2^{20}=1,048,576$	call it a million
$2^{30}=1,073,741,824$	call it a billion
$2^{40}=1,099,511,627,776$	call it a trillion

* When you buy a megabyte of member, it's as if you get 48, 576 bytes for free!

FIT

100 Summary

* Computers deterministically execute instructions to process information
* Computers have five parts: ALU, Control, Memory, Input and Output
* The control implements a process called the Fetch/Execute Cycle
* The F/E cycles is a fundamental method of performing operations EXACTLY the same way specified, every time. This idea is used in many places in computation

FIT
 100 For Monday

* Assignment 2 is due in your Monday/Tuesday lab
* Read Chapter 10 of FIT Course pack
* Lab 7 is the Introduction to Visual Basic
- Read through the Lab
\square Read the Chapters suggested there.

[^0]: - Copyright 2000:2001, University of Wastington

