

FIT 100 Data Storage – Flat Files

- ♦ Early days of computing 1950's to 1980
 □ File based data storage
 □ Flat files
 - Programs had to be written to :
 - = Read data from a file on the disk
 - Process data (enter student grades, update employee salary
 Write data back to the file
- ✤ But there are problems with file based data storage □ They deal directly with how we think

© Copyright 2000-2001. University of Washing

FIT 100 Problems with Flat Files

Need to write a program to get at data

- □ Too easy for anyone who writes the program to get to data

Data dependency

- = If you change format of any of data in flat file system, then you are forced to change all programs that access the data Zip codes changing from 5 to 9 digits
- Don't know which programs are using the data == Files full of data on a disk don't tell you who accesses them

© Copyright 2000-2001, University of Washingto

Name_	<u>Course</u>	Room#	Instructor
Paul Stevens	FIT 100	MGH 420	Whiteaker
Holly Eggelston	FIT 100	MGH 420	Whiteaker
Stephanie Wright	LIS 540	EE1 045	Boiko
Lisa Spagnolo	INFO 480	EE1 025	Whiteaker
Pam Green	FIT 100	MGH 420	Whiteaker
Thomas Nguyen	LIS 540	EE1 045	Boiko
 Redundant data Integrity and upon 	loado lo dalo	anomalies	

© Copyright 2000-2001, University of Washingto

 A database as the word is normally used, tables with specific contents, is know as a *database instance* (of a database schema)

There can be many instances of a single database schema

Student Number	Student Name	Credits	Sex	Class	Major	E-Mail
	LATA,POONAM	05.0	F	4	0-C-ANTH	pchant@u.washington.edu
	LEE,BRADLEY J	05.0	М	6	0-A-N MATR	leebr@u.washington.edu
	LIM,HENDRIK	05.0	М	3	0-C-ECON	helim@u.washington.edu
	MALANA, WELLA JOYCE CUNANAN	05.0	F	2	0-C-PREMAJ	wjmalana@u.washington.ed
******	NG,SAI-LAI	05.0	М	3	0-C-ECON	sailai@u washington edu
,,,,,,,,,,	PINNAMANENI,PRATHIBA	05.0	F	3	0-C-ANTH	prathi@u.washington.edu
*****	SIMPSON, JILL KATHERINE	05.0	F	2	0-C-PREMAJ	jksimp@u.washington.edu

- Database design is the process of setting up a database schema
- Not every design is good... there are a lot of db's out there that don't avoid redundancy Information is redundant if it is stored in multiple places in a database
- ✤ Example: UW groups needing your home address □ Administration - to send tuition bills □ Dean - to send notice of being on "Dean's List"
 - □ IMA to send you back your locker deposit

Multiple copies of the same information can have different values in different locations. Inconsistency of information is worse than no information

FIT 100					les es the data	, c	om	oine	lists	_
Permaner Address	1t		Stude 10212 10213	253	D Nick_Nam Chela J.T.		Majo INFO SPAN		GPA 3.89 3.85	Dean Data
Student_ID St		Str	eet_Ad	dress	City	State		Co	untry	PostalCode
1021253		14	14 Mountain Ave		Victoria	BC	BC		nada	V6N4T4
1014684 17		177	74 Estates Way		y Sacramento	CA		US	A	92958
1015674 19		190	0 Via Mission		Chico	CA		US	A	95928
1021343 17		171	715 65 th Ave		Seattle	WA		USA		98125
					/iew of Datab		<u> </u>			
Student_ID	Nick_Na	ame	Major	GPA	Street_Address	Cit		State	Countr	
1021253	Chela		INFO	3.89	14 Mountain Ave		toria	BC	Canada	
1021343	J.T.		SPAN	3.85	1715 65 th Ave	Sea	attle	WA	USA	98125
					e tables to avo ide the data u				see	niversity of Washington

© Copyright 2000-2001, University of Washingtr

- Database Management Systems are designed to manage access to tables (data stores)
- DBMSs normally include:
 - Data stores
 - □ Storage Engine □ Query Processor
- Commercial package, like Access, includes:
- Data Services
- □ Logic Services
- Presentation (Interfaces) Services
 - This combination allows a developer to create a complete system for an organization.

FIT 100 Why Separate?

- By looking at each layer as a component, you can add and remove components without breaking entire system
- You've already worked with presentation and some simple logic in your VB programs. Mainly you can think of the VB form as the interface for the user. The code that most of you wrote was tied to the form – not just to a separate logic component
- We've learned about tables as structures for storing data about single entities and associations (by using Key attributes)
- But, having the data and having the interface doesn't do much good if you don't have a middle man to handle the often complicated interaction between the two.

FIT 100 Logic vs. the Query Engine

- In the lectures ahead we'll look at operations on tables and the use of SQL (Structured Query Language) to access and manipulate data
- One thing to keep in mind:
 Logic deals with access and manipulation of data
 Queries (SQL) deal with access and manipulation of data
 But they aren't exactly the same
- ✤ Queries and query construction are part of Data Services □ But they can perform simple Logic
- When queries aren't enough to deal with all conditions, a move is made to use the Logic layer

© Copyright 2000-2001, University of Washingto

FIT 100 For Wednesday

- Continuation of Introduction to Databases
- Project 3 due
- Project 4 will be handed out and discussed

© Copyright 2000-2001, University of Wash