FIT
 100 Housekeeping

* Grace is gone this week, but - Her labs (AC and AD) will meet as usual ㅁ Her Monday morning (9 am) office hours have been moved to 2:30-4:30pm
* Project 2B is due Wednesday
* Project 3 will be handed out on Wednesday
* The next quiz is this Friday (covering FIT 11-15)

Iteration: Once Is Not Enough

FIT

100

People don't usually like to repeat themselves, but in computers repetition is one of the most valuable things a program can do. Computers can repeat steps
systematically without tiring. If program instructions are to be performed more than once, the computer can be programmed to repeat instructions without the programmer explicitly writing them out each time

FIT
 100 The Idea of Iteration

* Concept: Iteration is the repeated execution of a series of statements in programming
* There are two key components to iteration:
- The repetition of a bunch of steps...
\square A way to stop the repetition at some point and continue with the rest of the program
* To perform iteration, programming languages include special statements often called iteration statements

FIT
 100 Key Components of Iteration

* Iteration Component \# 1
- The statements that will be repeated are called the loop body
* Iteration Component \# 2
\square A test specifying when the repetition stops is called the stop condition
* In addition to the components above, loops typically have at least one variable that is explicitly changed "inside" the loop - this is called the iteration variable
* When the iteration variable contains a certain value (defined by the program), then the loop stops
* Some value must change at some point between consecutive iterations, or else the loop will never terminate... it is an infinite loop

FIT
 100 Syntax of a VB 6 Iteration

* Programming languages, like VB 6, usually have more than one form of iteration as part of their notation. But we will only study one of them here - the Do-While loop

```
Do While <stop condition>
<code statements>
```

* The meaning is as follows:
\square The stop condition is tested. If it is false, all the statements are skipped. Execution of the code continues at the point just after the Loop statement
\square If the stop condition is true, the code statements are performed once
\square The stop condition is tested again. If it is false the loop is over and the code statements are skipped; code execution continues after the Loop
\square If the stop condition is true, the code statements are performed a second time

ㅁ...

An Example, An Example

(iteration, get it? ©)

* The easiest way to see iteration in action is to print out the iteration variable after each loop ...

FIT 100 What Just Happened?

* What is the value of iterateVarafter the first Loop?
* What does the MsgBox display after the second Loop?
* Why does the Loop end?
* How many times does the loop execute?

Private SubForm_Click()
Dim iterateVar As Integer
iterateVar = 0
Do WhileiterateVar < 10
iterateVar $=$ iterateVar +1
MsgBox("iterateVar is " \& iterateVar)
Loop
End Sub

FIT
 100 Hmmmm , How Is It Done?

$1 \begin{array}{ll}\text { FIT } \\ 100\end{array}$ Blastoff

* Think about writing a program to do the following:

```
Private Sub Form_Click()
    Dim x As Integer
    x=10
    Do While x > 0
        Print x & " seconds"
    x=x-1
    Loop
    Print "Blastoff!!!!!"
    End Sub
```

 10 seconds
 9 seconds
 8 seconds
 7 seconds
 6 seconds
 5 seconds
 4 seconds
 3 seconds
 2 seconds
 1 seconds
 Blast Off!!!!!

FIT
 100 Blastoff

Private Sub Form_Click()
Dim x As Integer
$\mathrm{x}=10$
Do While $x>0$
Print x \& "seconds" Call Pause()
$x=x-1$
Loop
Loop "Blastoff
End Sub

Private Sub Pause()
Dim i As Integer, j As Integer $i=0$
Do While i < 1000
j=0
Do While j < 100
frmBlastoff.Visible $=$ True
$j=j+1$
$\stackrel{j}{\mathrm{j}} \mathrm{L}$
$i=i+1$
= $1+1+$
Loop
EndSub

FIT

100 A Little More About Infinite Loops

* If you don't properly change your iteration variable so that the stop condition eventually evaluates to false- then you will never exit the loop
* This is called an infinite loop
* The only way out of the infinite loop is by stopping the program from outside of the program itself
* In VB 6, press the CTRL + Break keys to end an infinite loop

FIT
 100 Random Numbers

* CONCEPT: Random numbers are number that are independent or unrelated to each other
\square Coin flipping can produce random bits... heads (0), tails (1)
\square Rolling a die can produce random digits ... 1 through 6
\square Drawing cards from a shuffled deck can produce
■ Random bits... red or black

FTo

100 Using Rnd

* Rnd gives a double between 0 and 1 - 0.467827363
* To chose randomly among x number of things, multiply Rnd by x and truncate ... the result is a random integer between 0 and $x-1$
■ Random digits ... 1 through 4 (Suit)
\boxminus Random digits ... 1 through 13 (Value)
* Rnd is VB6's random number generator

FIT
 100 Using Rnd

* This procedure will produce a random number between 1 and range:

Private Sub randomNumber(range As Integer, result As Integer)
result $=\operatorname{Int}($ range * Rnd $)+1$
End Sub

* After executing

Call randomNumber (4, x)
x will be an integer between 1 and 4

100 Is Random Really, Truly Random?

* What is randomness?
- Generation of some value or thing that is NOT predictable
* But, computers are deterministic - they exactly follow instructions and do exactly what is asked..how can they do something random?
* CONCEPT: Rnd is "Pseudo-random", a deterministic computation that produces numbers that appear to be random and pass standard tests for randomness
- Random numbers generated by a computer can be thought of as a ve ry, very long list of values. The computer always returns the values in the same order, but it doesn't always start at the same place in the list. If the list contained a million values, sometimes the computer would return values starting at the first value, but sometimes it might start at the 105,768 th value. Because the starting point is unknown and the list is so long, a repeatable pattern is not discernable. - Copyright 2000-2001, Universily of Washinglon

FIT 100
 100 Initializing Rnd

* Use Randomize to initialize VB's random number generator. This is called seeding.
* To avoid generating the same sequence of psuedo-random values, call Randomize before you call Rnd; but this only has to be done once. A good place to seed the psuedorandom number generator is in the Form's Load event:
- Private SubForm_Load()

Randomize
End Sub

* If Randomize is not called before Rnd is used, the same series of psuedo-random values will be returned
- Copyright 2000-2001, University of Wastington

FIT Experiment with Rnd

Private Sub cmdPick_Click(
Dim npicks As Integer, curpick As Integer
Dim cardsuit As Integer, cardnumber As Integer
Dim cardname As String
Dim resultstring As String
npicks $=$ txtncards.Text
curpick $=0$
Private Sub randomNumber(range As Integer,
result $=\operatorname{lnt}($ range * Rnd $)+1$
esultstring = "My picks are
End Sub
Do While curpick < npicks
Call randomNumber(4, cardsuit)
Call randomNumber(13, cardnumber)
Call randomNumber(13, cardnumber)
Call getCardName(cardsuit, cardnumber, cardname)
esultstring = resultstring \& vbCrLf \& cardname
|Results.Caption = resultstring
blResults. Visible = True
curpick = curpick + 1
Loop
End Sub
Copyright 2000-2000, Universily of Washington

\section*{| FIT |
| :---: |
| 100 | Experiment with Rnd}

$\left.\begin{array}{|l|l|}\hline \text { Private Sub getCardName(suit As Integer, } \\ \text { number As Integer, } \\ \text { name As String) }\end{array}\right]$

FIT
 100 Summary

* Iteration is very useful when you want the program to repeat a sequence of steps
* Iteration requires 2 components
- Loop body - the steps to be repeated
- Stop Condition - a way to exit the loop
* When the Loop ends, the execution of code continues at the point where the Loop ended
* You have been introduced to one iterations statement, the D o-While Loop, but there are many
* With Conditionals(If-Then) and Iteration (Do- While) you can accomplish almost any programming needed
* Computers generate random numbers using "pseudo random" techniques
* Random numbers are handy for making computers less boring - You will LOVE this function for Project 3 OCopyight 2000-2001, University of Washington

