

FIT

100 Expressions

* A means of performing the actual computation
* Many kinds of expressions. They can include:
- logical operators: And, Or, Not
- relational operators: <, >, <=, >=, < >
$=$ When used here $=$ means test to see of operands are the same
\square binary operators: $+,{ }^{*}, \&$
\square unary operators : -, ^, Not

FIT

100 Conditionals

* Used when a decision must be made between one or more possibilities (conditions)
* Basic conditional

ㅁ If <T/F Statement> Then 'tests for one condition: true

* General conditional
- If <T/F Statement> Then
<code statements>
tests for one condition, allows 2
outcomes. One for True,
the other for False (or otherwise)
End If
- If $<\mathrm{T} / \mathrm{F}$ Statement> Then Elseif <T/F Statement> Then
elseif <T/F Statement> Then
Ëlse
End If <code statements>
End If
'tests for multiple conditions

10 $\mathbf{1 0 0}$ Conditionals	
gradePt = 4.0	
f passClass = true then If theLetterGrade $=$ " A " then lblGrade.Caption = "You got a " \& gradePt Else lblGrade.Caption = "You didn't quite get a " \& grad End If	Pt \& ", but you passed!"
Else	
IblGrade.Caption = "You did not pass and are nowhere near a" \& gradePt	
* Take out a piece of paper	
* What does this program put into lbIGrade.Caption if the variables have the following values:	
\square A) passClass = false; theLetterGrade = " C^{\prime};	
\square B) passClass = true; theLetterGrade $=$ " C "	
\square C) passClass = true; the LetterGrade = "A"	- Copyightr2002000, Univesisily o Wastingon

| | [\| F.Form1 - - [a|x |
| :---: | :---: |
| FIT
 $\mathbf{1 0 0}$
 Example of Elself | Enter an NBA. Player Number and get their name \square OK |
| If txtPlayerNum.Text $=23 \quad$ Then
 IbIPlayerName.Caption = "Michael Jordan" | 'executed if . Text = 23 |
| Elself txtPlayerNum.Text = 3 Then lbIPlayerName.Caption = "Allan Iverson" | 'executed if .Text <>23 and 'Text= 3 |
| $\begin{aligned} & \text { Elself txtPlayerNum.Text }=8 \quad \text { Then } \\ & \text { IbIPlayerName.Caption }=\text { "Kobe Bryant" } \end{aligned}$ | ```'executed if.Text <>23 Or 3 'and Text = 8``` |
| ```Elself txtPlayerNum.Text =20 Then lbIPlayerName.Caption = "Gary Payton" Else``` | 'executed if .Text <>23, 3 Or 8 'and Text = 20 |
| lbIPlayerName.Caption = "I'm sorry, " \& _ "I don't recognize the number!" | 'executed if .Text is none of 'of the above |
| End If | - Copyright 20002001, Univerisil of Wastinglon |

FIT 100 100 Adding Another Condition: Elself	
* The conditional statement (If-Then-Else) is one way you know, so far, to control which statements are executed.	
* In VB6, using Elself is a way to test a long sequence of possible conditions:	
If $<T /$ F condition $>$ Then <code statement list> 'code statements for $1^{\text {st }}$ condition	
Elself $<T / F$ condition $>$ Then <code statement list> 'code statements for $2^{\text {nd }}$ condition	
Elself $<T / F$ condition $>$ Then <code statement list>	'code statements for 3 ${ }^{\text {rd }}$ condition
Else	
<code statement list>	'code statements for "otherwise"
End If	- Copyright 2000-2001, Unversily of Washingoton

FIT
 100 Potential Problems with Elself

* An If statement that uses Elself passes through all of the previous cases before reaching a given test. What are the consequences of this?
If num > 10 Then
result $=$ "More than 10 "
Elseif num > 20 Then
result = "More than 20"
Else
result = "Less than or equal to 10 " End If
* Will the Elself statement ever be executed?
- Copyight 2000:2001, Univesisily of Washinglon

FIT 100 Elself Is NOT a Nested If Statement...	
* ...But it is similar	If txtPlayerNum.Text $=23$ Then lbIPlayerName.Caption = "Michael Jordan
If txtPlayerNum. Text $=23$ Then	
lblPlayerName.Caption = "Michael Jordan"	Else If txtPlayerNum.Text $=3$ Then
Elself txtPlayerNum.Text = 3 Then	lbIPlayerName.Caption = "Allan Iverson" Else
lbIPlayerName.Caption = "Allan Iverson"	If txtPlayerNum. Text $=8$ Then lblPlayerName.Caption = "Kobe Bryant"
Elself txtPlayerNum.Text =8 Then \|blPlayerName.Caption = "Kobe Bryant"	IblPlayerName.Caption = "Kobe Bryant Else
	If txtPlayerNum.Text $=20$ Then
Elself txtPlayerNum.Text = 20 Then IbIPlayerName.Caption = "Gary Payton"	lb\|PlayerName.Caption = "Gary Payton" Else
Else	lbIPlayerName.Caption = "l'm sorry, " \& "I don't recognize the number!"
IbIPlayerName.Caption = "I'm sorry, " \&	End If
"I don't recognize the number!"	End If
End If	End If
	End If © Copyright 2000200, Univesilit of Washinglon

 "I don't recognize the number!"
End If

FIT
100
$\begin{array}{ll}\text { FIT } \\ 100 & \text { Remember Procedure Structure }\end{array}$

* Parts of a procedure specification
- Name
- Definition
- Parameters
- Declaration

Private Sub calcRecArea (base as Integer, height as Integer, _ area as Integer)
area $=$ base * height
End Sub

100 Input vs. Output

* Many programming languages (including VB6) provided several different ways of passing values back and forth between the actual and formal parameters
* The default in Visual Basic, and the only kind we'll use in this course, is pass by reference
* Pass by reference allows information to flow in both directions.
- Formal parameters can be used as inputs or outputs or both
- Any changes made to a formal parameters will make a change to the corresponding actual parameter
- Remember Lab 10 and the Body Mass Index Procedure?

FIT

100 Mini-Exercise \#2
$*$ What is the value of y after the form has been loaded? Option Explicit
Private Sub Form_Load ()
Dim y As Integer
$\mathrm{y}=0$
Call squid $(1, y)$
Call clam ($2, \mathrm{y}$)
End Sub
Private Sub clam(dork As Integer, zebra As Integer)
call squid (dork, zebra)
dork $=$ zebra +2
call squid(dork, zebra)
End Sub
Private Sub squid(x as Integer, z As Integer)
$\begin{aligned} & z=x+2 \\ & \text { Fnd }\end{aligned}$
$y=8$

FIT

100 From Lab 10: Body Mass Index

* The body mass index is defined as 4.89 times weight in lbs divided by height in feet** squared $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$
* What is the body mass procedure?
- Name -
- Definition -
- Parameters -
- Declaration -
Use height in inches rather than feet and inches

FIT

Actual Parameters

* The actual parameters must follow these formal/actual correspondence rules
ㅁ There must be the same number of actual parameters as there are formal parameters in the procedure declaration
\square The order of the parameters matters!
Θ The $1^{\text {st }}$ actual parameter corresponds to the $1^{\text {s }}$ formal parameter
- The $2^{\text {nd }}$ actual parameter corresponds to the $2^{\text {nd }}$ formal parameter
\otimes Etc, etc, etc
- The data types of the actual parameters must match the data types of the formal parameters
- Any formal parameter used as a procedure output must have a variable for the corresponding actual parameter Copyright 2000:2001, Univesity of Washinglon

FIT

100 From Lab 10: Body Mass Index

* The body mass index is defined as 4.89 times weight in lbs divided by height in feet ${ }^{* *}$ squared $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$
* What is the body mass procedure?
- Name - findBMI
- Definition - 4.89 * weightLBS / ((heightIN / 12) ^ 2)
- Parameters - weightLBS, heightIN, bodyMass - Declaration -

FIT

100 Exercise \# 3

* Given the following procedure declaration:

Private Sub example(r As Double, area As Double) area $=3.1415926{ }^{*} r^{\wedge} 2$
End Sub
and the following statements elsewhere in the program:
value1 $=10$
value2=5
Call example(value1, value2)
$\cdots \quad$ value2 $=3.14159266^{*}$ value1 ${ }^{\wedge} 2$
Write a statement with the same affect as the Call statement

100 Calling the Body Mass Procedure

* How do we call the procedure that will compute the body mass for a student named Jo who is $5^{\prime} 6$ " tall and weighs 138 lbs?

Call findBMI (138, 66, joBMI)

Private Sub findBMI(weightLBS as Integer, heightIN as Integer, bodyMass as Double)
bodyMass $=4.89$ * weightLBS $/(($ heightIN / 12) ^ 2$)$
End Sub

FIT

100 Hmmmm, How Is It Done?

* For Monday, think about writing a program to do the following:

10 seconds
9 seconds
8 seconds
7 seconds
6 seconds
5 seconds
4 seconds
3 seconds
2 seconds
1 seconds
Blast Off!!!!

FIT
$1 \mathbf{1 0 0}$ For Next Week

* Reading for Monday: Chapters 14 and 15 in FIT
* Grace is gone all next week, so David will do all lectures
* Monday office hours:
-9:00 AM CANCELLED
- Afternoon hours: 2:30-4:30 PM
* Have Lab 10 ready to show at the beginning of Lab 11 for bonus
* Labs and office hours for the rest or the week are not affected in any way
* Project 2, part 2 due Wednesday and Quiz 3 is Friday!

