

FIT 100 Expressions

- * A means of performing the actual computation
- $\boldsymbol{\ast}$ Many kinds of expressions. They can include:
 - □ logical operators: And, Or, Not

© Copyright 2000-2001, University of Wa

□ binary operators: +, *, &

□ unary operators : -, ^, Not

FIT 100 Conditionals

radePt = 4.0

f passClass = true then

If theLetterGrade = "A" then IbIGrade.Caption = "You got a " & gradePt

Else

lblGrade.Caption = "You didn't quite get a " & gradePt & ", but you passed!" End If

Else

lblGrade.Caption = "You did not pass and are nowhere near a " & gradePt End If

Take out a piece of paper

- What does this program put into IbIGrade.Caption if the variables have the following values:
 - A) passClass = false; theLetterGrade = "A";
 - □ B) passClass = true; theLetterGrade = "C"
 - C) passClass = true; the LetterGrade = "A" © Copyright 2000-2001, University of

FIT 100 Adding Another Condition: Elself The conditional statement (If-Then-Else) is one way you know, so far, to control which statements are executed. * In VB6, using Elself is a way to test a long sequence of possible conditions: If <T/F condition> Then 'code statements for 1st condition <code statement list> Elself <T/F condition> Then 'code statements for 2nd condition <code statement list> Elself <T/F condition> Then 'code statements for 3rd condition <code statement list> Else <code statement list> 'code statements for "otherwise" End If Copyright 2000-2001, University of Wa

FIT 100 Elself Is NOT a Not	ested If Statement
But it is similar If txtPlayerNum.Text = 23 Then IblPlayerName.Caption = "Michael Jordan" Elealf tytPlayerNum Text = 3 Then	If txtPlayerNum.Text = 23 Then IbiPlayerName.Caption = "Michael Jord Else If txtPlayerNum.Text = 3 Then IbiPlayerName.Caption = "Allan Iverso
IblPlayerName.Caption = "Allan Iverson" Elself txtPlayerNum.Text = 8 Then IblPlayerName.Caption = "Kobe Bryant"	Else If txtPlayerNum.Text = 8 Then IblPlayerName.Caption = "Kobe Bryar Else If txtPlayerNum.Text = 20 Th
Elself txtPlayerNum.Text = 20 Then IbiPlayerName.Caption = "Gary Payton" Else	IbIPlayerName.Caption = "Gary Payto Else IbIPlayerName.Caption = "I'm sorry, " & "I don't recognize the number!"
Ib PlayerName.Caption = "I'm sorry, " & _ "I don't recognize the number!" End If	End If End If End If End If c Capyright 2000-2001, University of Washington

FIT 100 Mini-Exercise #1	
What is the value of x afte loaded?	er the form has been
Option Explicit Dim x As Integer	
Private Sub squid() x=x+2	
End Sub	
x=0 Call squid	
End Sub	Copyright 2000-2001, University of Washington

Г

Г

FIT 100 Mini-Exerce	cise #2 lue of y after the form has been loaded?
Private Sub F- Dim y As In y=0 Call squid(1 Call clam (2 End Sub	orm_Load () teger , y) , y)
Private Sub cl call squid (dork = zeb call squid(d End Sub	am(dork As Integer, zebra As Integer) Jork, zebra) ra + 2 ork, zebra)
Private Sub so z = x+2 End Sub	juid(x as Integer, z As Integer) y=8

FIT 100 Actual Parameters FIT 100 From Lab 10: Body Mass Index * The actual parameters must follow these formal/actual The body mass index is defined as 4.89 times weight correspondence rules in lbs divided by height in feet** squared (kg/m²) □ There must be the same number of actual parameters as there are formal parameters in the procedure declaration What is the body mass procedure? □ Name – findBMI □ The order of the parameters matters! □ Definition – 4.89 * weightLBS / ((heightIN / 12) ^ 2) = The 1st actual parameter corresponds to the 1st formal parameter □ Parameters – weightLBS, heightIN, bodyMass ${}_{\equiv}$ The 2^{nd} actual parameter corresponds to the 2^{nd} formal Declaration parameter Etc, etc, etc Private Sub findBMI (weightLBS as Integer, heightIN as Integer, _ bodyMass as Double) □ The data types of the actual parameters must match the data types of the formal parameters bodyMass = 4.89 * weightLBS / ((heightIN / 12) ^ 2) End Sub □ Any formal parameter used as a procedure output must have a variable for the corresponding actual parameter ° Copyright 2000-2001, University of Wa © Copyright 2000-2001, University of Washington

Private Sub findBMI(weightLBS as Integer, heightIN as Integer, _ bodyMass as Double) bodyMass = 4.89 * weightLBS / ((heightIN / 12) ^ 2)

End Sub

© Copyright 2000-2001, University of Washin

FIT 100 Exercise # 3

✤ Given the following procedure declaration:

Private Sub example (r As Double, area As Double) area = 3.1415926 * r ^ 2 End Sub

and the following statements elsewhere in the program:

value1=10 value2= 5 Call example(value1, value2)

 ...
 value2 = 3.1415926 * value1 ^ 2

 Write a statement with the same affect as the Call statement

© Copyright 2000-2001. Un

FIT 100 Calling the Body Mass Procedure

How do we call the procedure that will compute the body mass for a student named Jo who is 5'6" tall and weighs 138 lbs?

Call findBMI (138, 66, joBMI)

Private Sub findBMI(weightLBS as Integer, heightIN as Integer, _ bodyMass as Double) bodyMass = 4.89 * weightLBS / ((heightIN / 12) ^ 2)

End Sub

© Copyright 2000-2001, University of Washingto

FIT Hmmmm, How Is It Done? For Monday, think about writing a program to do the following: 10 seconds 9 seconds

- 8 seconds
- 7 seconds
- 6 seconds
- 5 seconds 4 seconds
- 3 seconds
- 2 seconds
- 1 seconds Blast Off!!!!!

© Copyright 2000-2001, University of Washington

FIT 100 For Next Week

- ✤ Reading for Monday: Chapters 14 and 15 in FIT
- * Grace is gone all next week, so David will do all lectures
- ♦ Monday office hours:
 □ 9:00 AM CANCELLED
 □ Afternoon hours: 2:30 4:30 PM
- Have Lab 10 ready to show at the beginning of Lab 11 for bonus
- $\boldsymbol{\ast}$ Labs and office hours for the rest or the week are not affected in any way
- Project 2, part 2 due Wednesday and Quiz 3 is Friday!
 Copyright 2000 2001, University of Wed