CSE 351 The Hardware/Software Interface

Credits
4.0 (3 hrs lecture, 1 hr section)

Lead Instructor
Luis Ceze

Textbook
- *Computer Systems*, Bryant
- *C Programming Language*, Kernighan

Course Description
Examines key computational abstraction levels below modern high-level languages; number representation, assembly language, introduction to C, memory management, the operating-system process model, high-level machine architecture including the memory hierarchy, and how high-level languages are implemented.

Prerequisites
CSE 143.

CE Major Status
Required

Course Objectives
At the end of this course, students should:

1. understand the multi-step process by which a high-level program becomes a stream of instructions executed by a processor;
2. know what a pointer is and how to use it in manipulating complex data structures;
3. be facile enough with assembly programming (X86) to write simple pieces of code and understand how it maps to high-level languages (and vice-versa);
4. understand the basic organization and parameters of memory hierarchy and its importance for system performance;
5. be able to explain the role of an operating system;
6. know how Java fundamentally differs from C;
7. grasp what parallelism is and why it is important at the system level; and
8. be more effective programmers (more efficient at finding bugs, improved intuition about system performance).
ABET Outcomes
(a) an ability to apply knowledge of mathematics, science, and engineering
(b) an ability to design and conduct experiments, as well as to analyze and interpret data
(c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
(e) an ability to identify, formulate, and solve engineering problems
(f) an understanding of professional and ethical responsibility
(i) a recognition of the need for, and an ability to engage in life-long learning
(k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice

Course Topics

- Number representation: Two’s complement, signed vs. unsigned, floating point (1 week)
- Assembly (2 weeks)
 - Memory vs. registers
 - Instruction format
 - Control structures in assembly (loops, procedure calls)
- C (2 weeks)
 - Pointers, arrays, strings
 - Memory management, malloc/free, stack vs. heap
 - structs
- Compilation, linking, libraries (code across multiple files) (0.5 weeks)
- The process model (what the operating system provides, not how it provides it) (1 week)
 - Virtualization and isolation (including virtual memory)
 - Components of a process state and notion of a context switch
 - System calls for accessing shared resources and communication channels
 - Asynchronous signals
- High-level machine architecture (2 weeks)
 - Register file
 - Instruction cycle
 - Caching and the memory hierarchy
- The Java-to-C connection (1 week)
 - Representing an object as pointer to struct with pointer to method-table; performing a method call
 - Constructors as malloc-then-initialize
 - Garbage collection via reachability from the stack
 - Java array-bounds-checking via array-size fields
- Parallelism/multicore/pthreads (0.5 weeks)