CSE 311 Foundations of Computing I

Credits

4.0 (3 hrs lecture, 1 hr section)

Lead Instructor

Paul Beame

Textbook

Discrete Math & Its Applications, Rosen

Course Description

Examines fundamentals of logic, set theory, induction, and algebraic structures with applications to computing; finite state machines; and limits of computability.

Prerequisites

CSE 143; either MATH 126 or MATH 136.

CE Major Status

Required

Course Objectives

At the end of this course, students will be able to:

- express simple mathematical concepts formally
 - *understand* formal logical expressions and *translate* between natural language expressions and predicate logic expressions
 - manipulate and understand modular arithmetic expressions
 - *create* simple proofs, including proofs by induction
 - design two-level logic circuits to compute Boolean functions
 - design simple finite state machines both with and without output
 - design and interpret regular expressions representing sets of strings
 - recognize that certain properties of programs are undecidable

ABET Outcomes

- (1) an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics (H)
- (6) an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions (M)
- (7) an ability to acquire and apply new knowledge as needed, using appropriate learning strategies (H)

Course Topics

- Propositional/Boolean logic (3-4 lecture hours)
- Predicate Logic (2 lecture hours)
- Logical Inference (2 lecture hours)
- Sets and Functions (0.5-1 lecture hour)
- Arithmetic (3-4 lecture hours)
- Mathematical Induction and Applications (5-6 lecture hours)
- Relations and Directed Graphs (1.5-2 lecture hours)
- Finite-State Machines (4.5-5 lecture hours)
- Circuits for finite state machines (1 lecture hour)
- Turing Machines and Undecidability (3-4 lecture hours)