

 124 of 291

CSE 143 Computer Programming II

Credits

5.0 (3 hrs lecture, 2 hrs section)

Lead Instructor

Stuart Reges

Textbook

Building Java Programs: A Back to Basics Approach, Reges & Stepp

Course Description

Continuation of CSE 142. Concepts of data abstraction and encapsulation including stacks,

queues, linked lists, binary trees, recursion, instruction to complexity and use of predefined

collection classes.

Prerequisites

CSE 142.

CE Major Status

Required

Course Objectives

Students learn about data abstraction and the basic design principles of object oriented

programming. Students will become familiar with standard data abstractions (lists, maps, sets,

stacks, queues) as well as a variety of implementation techniques (arrays, linked lists, binary

trees). Students will learn to program using recursion and recursive backtracking. Students will

learn the object-oriented constructs that support code reuse (encapsulation, interfaces,

inheritance, abstract classes) as well as learning how to make use of off-the-shelf components

from libraries like the Java Collections Framework.

ABET Outcomes

(1) an ability to identify, formulate, and solve complex engineering problems by applying

principles of engineering, science, and mathematics (H)

(2) an ability to apply engineering design to produce solutions that meet specified needs with

consideration of public health, safety, and welfare, as well as global, cultural, social, , and

economic factors (H)

(7) an ability to acquire and apply new knowledge as needed, using appropriate learning

strategies (H)

Course Topics

Abstract data types: stacks, queues, lists, maps, sets

 125 of 291

Implementing linked structures (linked lists, binary trees)

Recursion and recursive backtracking

Using off-the-shelf components (e.g., Java Collections Framework)

Use of inheritance for additive change and factoring out common code into abstract classes

Class design: encapsulation, documentation, throwing exceptions, appropriate choice of fields

Thorough testing and debugging

Time and space complexity

Efficient sorting and searching algorithms (binary search, mergesort)

Iterator use and implementation

