CSE 431 Introduction to Theory of Computation

Credits

3.0 (3 hrs. lecture)

Lead Instructor

Anup Rao **Textbook**

• Computational Complexity, Arora

Course Description

Models of computation, computable and noncomputable functions, space and time complexity, tractable and intractable functions.

Prerequisites

either CSE 312 or CSE 322.

CE Major Status

Selected Elective

Course Objectives

Develop the concepts and skills necessary to be able to evaluate the computability and complexity of practical computational problems.

ABET Outcomes

(a) an ability to apply knowledge of mathematics, science, and engineering

Course Topics

- Turing machines (deterministic, nondeterministic, multitape)
- Church-Turing Thesis
- Decidability and undecidability, diagonalization, and reducibility
- Halting problem, Post correspondence problem, Rice's Theorem, and other undecidability results
- Time and space complexity
- P vs. NP, NP-completeness, Cook's Theorem, and other NP-complete problems
- PSPACE, PSPACE-completeness, PSPACE-complete problems
- L vs. NL, NL-completeness, Savitch's Theorem, Immerman-Szelepcsenyi Theorem