CSE 352 Hardware Design and Implementation

Credits

4.0 (3 hrs lecture, 3 hr lab)

Lead Instructor

Mark Oskin

Textbook

• Digital Design & Computer Architecture, Harris

Course Description

Covers digital circuit design, processor design, and systems integration and embedded-systems issues. Includes substantial hardware laboratory.

Prerequisites

CSE 311; CSE 351.

CE Major Status

Required

Course Objectives

At the end of this course, students should:

- 1. know how to implement a Boolean function in hardware, and how to analyze the cost and performance of the implementation
- 2. understand system clocking methodology to implement sequential circuits
- 3. understand the timing constraints imposed by the clocking methodology and how to analyze a digital system for timing correctness
- 4. understand the basics of computer arithmetic
- 5. understand how to implement an instruction set processor using the digital design methodology
- 6. understand how to use pipelining to improve the performance of a digital circuit
- 7. understand how to use forwarding, stalling and prediction to address hazards in pipelined processors
- 8. be able to use design tools to design and implement digital circuits using FPGA technology
- 9. be able to write and debug assembly language programs, including the use of interrupts and timers for real-time operation

ABET Outcomes

- (a) an ability to apply knowledge of mathematics, science, and engineering
- (b) an ability to design and conduct experiments, as well as to analyze and interpret data
- (c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- (e) an ability to identify, formulate, and solve engineering problems
- (i) a recognition of the need for, and an ability to engage in life-long learning
- (k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice

Course Topics

- Implementation of Boolean functions (6 lectures)
- Implementation of sequential circuits (6 lectures)
- FPGA architectures and CAD tools (2 lectures)
- Y86 processor design (8 lectures)
- Support for real-time, embedded systems (3 lectures)
- Pipelining (3 lectures)