

 149 of 339

CSE 331 Software Design and Implementation

Credits
4.0 (3 hrs lecture, 1 hr section)

Lead Instructor
Michael Ernst

Textbook

 Effective Java, Bloch

 Pragmatic Programmer, Hunt & Thomas

Course Description
Explores concepts and techniques for design and construction of reliable and maintainable

software systems in modern high-level languages; program structure and design; program-

correctness approaches, including testing; and event-driven programming (e.g., graphical user

interface). Includes substantial project and software-team experience.

Prerequisites
CSE 143.

CE Major Status
Selected Elective

Course Objectives

There is a level of programming maturity beyond introductory programming that comes from

building larger systems and understanding how to specify them precisely, manage their

complexity, and verify that they work as expected. After completing this course successfully

students should be able to:

 Successfully build medium-scale software projects in principled ways

 Understand the role of specifications and abstractions and how to verify that an

implementation is correct, including effective testing and verification strategies and use

of formal reasoning

 Analyze a software development problem and be able to design effective program

structures to solve it, including appropriate modularity, separation of abstraction and

implementation concerns, use of standard design patterns to solve recurring design

problems, and use of standard libraries

 150 of 339

 Use modern programming languages effectively, including understanding type systems,

objects and classes, modularity, notions of identity and equality, and proper use of

exceptions and assertions

 Gain experience with contemporary software tools, including integrated development

environments, test frameworks, debuggers, version control, and documentation

processing tools

To gain experience we will use Java and associated tools like Eclipse, JUnit, JavaDoc, and

Subversion, but the goal is to understand the underlying ideas and concepts that are widely

applicable to software construction.

ABET Outcomes
(a) an ability to apply knowledge of mathematics, science, and engineering

(c) an ability to design a system, component, or process to meet desired needs within

realistic constraints such as economic, environmental, social, political, ethical, health and

safety, manufacturability, and sustainability

(e) an ability to identify, formulate, and solve engineering problems

(k) an ability to use the techniques, skills, and modern engineering tools necessary for

engineering practice

Course Topics

 Reasoning about programs: pre- and post-conditions, invariants, and correctness

 Abstract data types, specification, implementation, abstraction functions, representation

invariants, notions of equality

 Java language issues: subclasses and subtypes, generics, exceptions, assertions, etc.

 Tools: Eclipse IDE, version control, svn

 Code quality, style, comments, documentation, JavaDoc

 Testing, test coverage, black- and white-box testing, test-first development, regression

testing, JUnit

 Debugging strategies and tools

 Design: modular design, coupling, cohesion; design patterns; basic UML as a design

notion

 User interfaces, callbacks, separation of model from view/control

